
Dynamic switching of the magnetization in a driven molecular nanomagnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 036002

(http://iopscience.iop.org/0953-8984/22/3/036002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 06:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 036002 (6pp) doi:10.1088/0953-8984/22/3/036002

Dynamic switching of the magnetization in
a driven molecular nanomagnet
L Chotorlishvili1,2, P Schwab1,3 and J Berakdar4

1 Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany
2 Physics Department of the Tbilisi State University, Chavchavadze avenue 3, 0128, Tbilisi,
Georgia
3 TU Braunschweig Institut für Mathematische Physik, Mendelssohnstraße,
338106 Braunschweig, Germany
4 Institut für Physik, Martin-Luther Universität Halle-Wittenberg, Heinrich-Damerow-Straße
4, 06120 Halle, Germany

Received 13 August 2009, in final form 16 November 2009
Published 16 December 2009
Online at stacks.iop.org/JPhysCM/22/036002

Abstract
We study the magnetization dynamics of a single molecular nanomagnet driven by static and
variable magnetic fields within a classical treatment. The underlying analysis is valid for a
regime where the energy is definitely lower than the anisotropy barrier, but still a substantial
number of states are excited. We find the phase space to contain a separatrix line. Solutions far
from it are oscillatory whereas the separatrix solution is of a soliton type. States near the
separatrix are extremely sensitive to small perturbations, a fact that we utilize in obtaining
dynamically induced magnetization switching. A new type of magnetization switching is
proposed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Single molecular nanomagnets (MNM) are molecular struc-
tures with a large effective spin (S), e.g. for the prototypical
MNM Mn12 acetates [1] S = 10. MNM show a number of
interesting phenomena that have been the focus of theoretical
and experimental research [1–11]. To name but a few, as a re-
sult of the strong uniaxial anisotropy, MNM show a bistable
behaviour [1]; they also exhibit a resonant tunnelling of mag-
netization [2] that shows up as steps in the magnetic hysteresis
loops [3–5]. Of special relevance for applications in informa-
tion storage is the large relaxation time of MNM [12].

The present theoretical work focuses on the dynamics of
the magnetization. The established picture of macroscopic
quantum tunnelling of the magnetization is as follows: the
MNM effective spin Hamiltonian Ĥ = −DS2

z possesses
degenerate energy levels ±MS,−S < Ms < S separated by
the finite barrier EB = DS2. At low temperatures only the
lowest levels MS = ±S are populated. Those two states are
orthogonal to each other and no tunnelling is possible. An
anisotropic perturbation E(S2

x −S2
y) does not commute with the

Hamiltonian Ĥ = −DS2
z and mixes therefore the states at both

sides of the anisotropy barrier leading thus to tunnelling [8].
Reversal of the magnetization due to macroscopic quantum

tunnelling has a maximum for the states close to the top of the
barrier. This case corresponds to the high temperature limit.

In this work we consider the magnetization dynamics in-
duced by constant and harmonic external magnetic fields: the
influence of a variable magnetic field on MNM at low temper-
atures, i.e. when only 2–3 levels are excited was considered
in [10, 11]. It was shown that in this case the problem is re-
duced to a three level Jaynes–Cummings model, the so called
Lambda configuration. Therefore, it is analytically solvable in
principle. The low temperature assumption is, however, quite
restrictive [12]: if only the levels E0, E1, E2 are involved the
low temperature approximation is applicable for temperatures
obeying [11] kBT < E1 − E0, where kB is the Boltzmann con-
stant. For Mn12 this leads to the estimate T < 0.6 K [13]. Ob-
viously, if the temperature exceeds T , an approximation with a
large number of levels participating in the process is more ap-
propriate. In this case the quasi-classical approximation for the
spin dynamics becomes applicable [14, 15]. It is our aim here
to conduct such a study. MNM will be modelled as in previous
studies, e.g. in [10, 11]. We consider the dynamical reversal
of the magnetization, caused not by an anisotropic perturba-
tion but by a constant and varying magnetic field. The energy
is such that a large number of levels are excited, but still low
enough such that tunnelling induced by an anisotropic pertur-
bation is weak. We shall show that under different conditions
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(depending on the field’s parameters), different types of mag-
netization dynamics are realized. For the time evolution of the
magnetization vector, under certain conditions we obtain a so-
lution of the soliton type. The various types of the dynamics
will be linked to the structure of the phase space of the sys-
tem. In particular, the existence of the separatrix in the phase
space has a profound influence on the system’s behaviour. We
will show that in this case a new type of field-assisted mag-
netization dynamics emerges, namely a dynamically induced
switching. This occurs when the energy of the system (in the
presence of the field) is still lower than the re-scaled anisotropy
barrier [16] and coincides with the separatrix values of the en-
ergy. Therefore, the domain close to the separatrix is identified
as the phase space area where the dynamically induced switch-
ing takes place.

We note that classical dynamic of magnetic nanoparticles
is well studied in a number of special cases. Problems con-
cerning nanoparticle magnetization switching were addressed
in several works [17–21]. In the case when the steady state pre-
cession is around equilibrium, the problem can be linearized.
A switching effect was then predicted for the case of a zero
static field [17, 18]. In contrast, as will be shown in the present
study, a constant field applied along the hard axis (x-axis) leads
to a complex phase space of the system, a fact that will be uti-
lized to identify a new switching mechanism. We also note
that due to the high anisotropy barrier of the single molecu-
lar magnets, dissipative processes are less relevant for MNP
dynamics. Dissipative processes become important at higher
energies. However at the energies near barrier hight transverse
anisotropy terms become important [6] and lead to a markedly
changed structure of the phase space. These effects therefore
are beyond the scope of the present paper.

2. Model

We consider a molecular magnet, e.g. Fe8 or Mn12 acetate. The
uniaxial anisotropy axis (easy axis) sets the z-direction. The
MNM is subjected to a constant magnetic field directed along
the x-axis and a radio frequency (rf) magnetic field polarized
in the x–y-plain. The Hamiltonian of the single molecular
magnet reads [11]

Ĥ = Ĥ0 + ĤI ,

Ĥ0 = −DŜ2
z + gμB H0 Ŝx ,

ĤI = − 1
2 gμB H1eiω0t(Ŝy + Ŝx) + h.c.

(1)

Here D is the longitudinal anisotropy constant, Ŝx , Ŝy , Ŝz are
the projections of the spin operators along the x, y, z-axis, g is
the Landé factor, and μB is the Bohr magneton. H0 stands for
the constant magnetic field amplitude whereas H1, and ω0 are
the amplitude and the frequency of the rf field and h.c. means
hermitian conjugate. The problem when both fields H0, H1

are time dependent was studied in [22]. Using quantum-
mechanical perturbation theory, the probability of quantum
tunnelling of magnetization has been estimated. However,
here we are interested in the exact solution of the classical
equations of motion. Typical values of the parameter D are
90 GHz for Mn12 and D = 30 GHz for Fe8 [13, 15]. Since

we are interested in the case when a large number of levels are
excited, the spin of the magnetic molecule can be treated as a
classical vector on the Bloch sphere. Taking into account that
S2 = S2

x + S2
y + S2

z is an integral of motion, it is appropriate to
switch to the new variables (Sz, ϕ) via the transformation [14]:
Sx = √

1 − S2
z cos ϕ, Sy = √

1 − S2
z sin ϕ and rewrite (1) in

the compact form:

H = −λ

2
S2

z +
√

1 − S2
z cos ϕ

− ε

√
1 − S2

z (sin ϕ + cos ϕ) cos(ω0t). (2)

Hereafter, if not otherwise stated the energy and the timescales
are set by the constant magnetic field H �→ H/gμBH0S, t �→
2DS

λ
t, ω0 �→ λ

2DS ω0. We introduced two dimensionless
parameters λ = 2DS

gμB H0
, ε = H1

H0
< 1. The corresponding

Hamilton equations are

Ṡz = −∂ H

∂ϕ
=
√

1 − S2
z sin ϕ

+ ε

√
1 − S2

z (cos ϕ − sin ϕ) cos(ω0t),

ϕ̇ = ∂ H

∂Sz
= −

(

λ + cos ϕ
√

1 − S2
z

)

Sz

+ ε
Sz√

1 − S2
z

(sin ϕ + cos ϕ) cos(ω0t).

(3)

These equations are nonlinear. Therefore, the solutions to (3)
can be regular or chaotic, depending on the values of the
magnetic fields (parameters λ, ε). From the intuitive point of
view it is obvious, that for the low energy case, i.e. close to
the ground states Sz ≈ ±1, the system equation (2) should
become linear. However in the language of variables action
angle (Sz, ϕ) that is not so trivial. Therefore, we will discuss
this question in more detail when studying solutions of the
autonomous system.

3. Autonomous system: an exact solution

We inspect at first the autonomous system, i.e. when ε = 0.
In this case the system can be integrated exactly: taking into
energy conservation H = const = −�

λ

2
S2

z −
√

1 − S2
z cos ϕ = � (4)

and
Ṡz =

√
1 − S2

z sin ϕ, (5)

we find

Ṡ2
z +

[
λS2

z

2
− �

]2

= 1 − S2
z . (6)

Consequently from equation (6) we infer

λt

2
=
∫ Sz(0)

Sz(t)

dSz√
( 2

λ
)2(1 − S2

z ) − [S2
z − 2�

λ
]2

. (7)

This relation can be rewritten in the form

λt

2
=
∫ Sz(0)

Sz(t)

dSz√
(a2 + S2

z )(b
2 − S2

z )
, (8)

2
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where a2 = 2
λ2 [θ2/2 − (�λ − 1)], b2 = 2

λ2 [θ2/2 + (�λ − 1)],
θ2(λ) = 2

√
λ2 − 2�λ + 1. Performing the integration (8) and

inverting the result we obtain

Sz(t) =
{

b cn[(bλ/k)(t − α), k], 0 < k < 1,

b dn[(bλ/k)(t − α), 1/k], k > 1.
(9)

Here cn(· · ·) and dn(· · ·) are the Jacobi periodic functions. The
coefficients that enter equation (9) read

k2 = 1

2

(
bλ

θ(λ)

)2

= 1

2

[
1 + (�λ − 1)√

λ2 + 1 − 2�λ

]
,

α = 2[λ
√

a2 + b2 F(arccos[Sz(0)/b], k)]−1.

(10)

With F(ϕ, k) = ∫ ϕ

0 dq(1− k2 sin2 1)−1/2 being the incomplete
elliptical integral of the first kind. From equation (9) we
conclude that, depending on the values of the parameter k (10),
the dynamics of the magnetization is described by different
solutions. They are separated by the special value k = 1
of the bifurcation parameter k indicating thus the presence of
topologically distinct solutions. In equation (9) the Jacobian
elliptic functions cn(ϕ, k) and dn(ϕ, k) are periodic in the
argument ϕ with the period 4K (k) and 2K (k) respectively,
where K (k) = F(π/2, k) is the complete elliptic integral of
the first kind [23]. The time period of the oscillation of the
magnetization Sz(t) is given by

T =

⎧
⎪⎨

⎪⎩

4kK (k)

bλ
for 0 < k < 1,

2kK (1/k)

bλ
for k > 1.

(11)

If k −→ 1, the period becomes infinite because K (k) −→
ln(4/

√
1 − k2). The evolution in this special case is given by

the non-oscillatory soliton solution

Sz(t) = b/ cosh[bλ(t − α)]. (12)

Considering equation (10), we infer that the bifurcation value
of the parameter k = 1 is connected with an initial energy of
the system via the ratio

�S = −HS/gμB H0 = 1,

H (Sz(t = 0); ϕ(t = 0)) = −gμB H0 = HS.
(13)

If this condition (13) is not fulfilled the dynamics of the
magnetization is described by the solutions (9). Finally, to
conclude this section we consider linear limit of solutions
equation (9):

cn(u, k) ≈ cos(u) + k2sin(u)(u − 1
2 sin(2u)), k2 � 1,

and
dn(u, k) ≈ 1 − sin(u)2/k2, k2 � 1.

The interpretation of those asymptotic solutions is clear. First
one corresponds to the case when in the effective magnetic field
Heff = (gμB H0, 0,−DSz), the x-component is dominant.
Therefore the magnetization vector performs small oscillations
|Sz(t)| < 1 trying to be aligned along effective magnetic field.
While in the second case, corresponding to the ground state
solution (system is near to the bottom of double potential well)
the effective magnetic field is directed along the z-axis.

Figure 1. Two types of phase trajectories of the system separated by
the separatrix k = 1, � = �S. The open trajectory (solution
Sz(t) = dn(t, 1/k), k = 1.52, � > �S) corresponds to the rotational
regime of motion. The closed trajectory (solution Sz(t) = cn(t, k),
k = 0.89,� < �S) to the oscillatory regime. The separatrix crossing
point

⊗
is of special interest: around this point any perturbation

leads to the formation of homoclinic structure.

4. Topological properties of solutions

As established [24, 25], the existence of a bifurcation
parameter indicates that the solutions separated by it, have
different topological properties. Therefore, it is instructive
to consider the properties of the solutions (9) in the phase
plane. The existence of the integral of motion (4) in the
autonomous case makes it possible to express Sz as a function
of ϕ: Sz(ϕ,�). The phase portrait of the system is shown
in figure 1: the different phase trajectories correspond to
the solutions (9). The phase trajectories corresponding to
the solution Sz(t) = dn(ϕ, k), k > 1 are open and they
describe a rotational motion of the magnetization. Trajectories
corresponding to Sz(t) = cn(ϕ, k), k < 1 are closed and they
describe the oscillatory motion of the magnetization. Closed
and open phase trajectories are separated from each other by
the special line called separatrix. The existence of a separatrix
is insofar important as the states in the phase space area near
the separatrix are very sensitive [25] to external perturbations,
which signals the onset of chaotic behaviour. The role of
perturbations in our particular case is played by the applied
periodic magnetic field. We recall that the stochastic layer has
finite size and it occupies a small part of the phase space.

5. Formation of a stochastic layer

To determine the width of the stochastic layer we follow [25].
For details of the formation of the stochastic layer and for the
general formalism we refer to the monograph [25]. Here we
only present the main findings. We introduce the canonical
variable of action I = 1

π

∮
Sz(�, ϕ) dϕ and rewrite the driven

nonlinear system (2) in the following form:

H = H0 + εV (I, ϕ)cos(ω0t). (14)

Here H0 = ω(I )I, ω(I ) = [ dI (�)

d�
]−1. The trajectories laying

far from separatrix of the unperturbed Hamiltonian H0 are not
influenced by perturbation. The motion near the homoclinic
points of the separatrix is very slow [25]. Because the period
of motion described by (11) is logarithmically divergent, even

3
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small perturbations end up with a finite influence due to the
large period of motion. Thus, the equations of motion for the
canonical variables (I, ϕ)

İ = ∂ I

∂ H0
Ḣ = − ε

ω(I )

∂V

∂Sz
Ṡzcos(ω0t), (15)

ϕ̇ = ∂ H

∂ I
= ω(I ) + ε

∂V

∂Sz
Ṡzcos(ω0t), (16)

may be integrated taking into account the features of the
motion near to the separatrix. Namely, the acceleration Ṡz

gives a nonzero contribution in the integral
∫

dt ∂V
∂ I Ṡzcos(ω0t)

only near to the homoclinic points [25] (the particle moves
along the phase trajectory very fast and spends most of the
time near the homoclinic points). Therefore, the differential
equations (15), (16) can be reduced to the following recurrence
relations:

Ī = I − ε

ω(I )

∫

�t
dt

∂V

∂Sz
Ṡzcos(ω0t), (17)

ϕ̄ = ϕ + πω0

ω( Ī )
. (18)

Here Ī , ϕ̄, and I, ϕ are the values of the canonical variables
just after and before passing the homoclinic point, �t is the
interval of the time where Ṡz is different from zero. One
can deduce the coefficient of stochasticity by evaluating the
maximal Lyapunov exponent for the Jacobian matrix

(
∂ Ī
∂ I

∂ Ī
∂ϕ

∂ϕ̄

∂ I
∂ϕ̄

∂ϕ

)

, (19)

of the recurrence relations (17), (18). All of this subsume to
the following expression for the width of the stochastic layer

K0 = πεω0

ω2

∣∣∣∣
dω

dH

∣∣∣∣ . (20)

Here ε, ω0 are the amplitude and the frequency of the
perturbation. Note that the expression (20) is general [25]
and the only thing one has to do is to calculate the nonlinear
frequency ω(I ) and its derivative with respect to the energy
for the particular system. Thus, even for small perturbation
(in our case it is the magnetic field with the frequency ω0

and the amplitude ε, see equation (2)) the dynamics near the
separatrix k = 1, Hc = −gμb H0 is chaotic and unpredictable.
Consequently, the solutions (9) have no meaning near the
separatrix. At the same time far from the separatrix H �=
HS,� �= 1, k �= 1 they are valid. We note that the
expression (20) is valid for a low frequency perturbation ω0 �
D and for a high frequency perturbation ω0 � D as well. For
estimation of the width of the stochastic layer K0 the variable
of action should be determined. Taking into account (4) we
find

I ±(�) =
∮ [

1

2λ2

(
2λ� − cos2 ϕ

± 2λ cos ϕ

√

1 + 1

4λ2
cos2 ϕ

)]1/2

dϕ. (21)

Figure 2. Chaotic motion near the separatrix (k = 1, � = �S = 1),
D = 90 GHz. Time independent field H0, is chosen such that
λ = 2DS

gμB H0
= 4, and the ratio between the time independent and

variable fields is ε = H1/H0 = 0.3. The initial energy
H = −4.5 × 103 GHz is 8/9 of the re-scaled barrier height
E

′
B = DS2(1 − 1

λ
)2. Frequency of the variable field is ω0 = 5. One

observes that the orientation of the magnetization is changing in time
chaotically.

If the static magnetic field is weak then λ = 2DS
gμB H0

� 1

is a large parameter. Therefore, terms of the order λ−2 can
be neglected. Retaining 1/λ terms we find from (21) the
expression

I (�) = I +(� > 1) = I −(� > 1) = 2

√
�+1

λ
E

(
2

�+1

)
,

(22)
where E(k) is the complete elliptic integral of the second kind.
Taking into account (22) the expression for the width of the
stochastic layer acquires the following form:

K0 ≈ πεω0√
λ(� + 1)|� − 1| K

(
2

� + 1

)
E

(
2

� + 1

)
. (23)

Condition K0 > 1 of the emergence of stochasticity imposes
certain restrictions on the parameters of the magnetic field ε, ω,
H0 and on the initial energy � of the system. When the energy
approaches the separatrix value � −→ 1 the condition K0 > 1
becomes valid even for a very small ε � 1 perturbation. This
testifies the fact that the system near the separatrix is sensitive
to small perturbations. The emergence of chaos is proved by
numerical calculations as well, see figure 2. As one can see
from this plot, the dynamics is not regular. The projection Sz(t)
of magnetization changes orientation in a chaotic manner.

However, a chaotic change of orientation is not a reversal
to a stationary target state. Under dynamical switching we
understand here the transition between the oscillatory and the
rotational types of motion. To be more specific let us discuss
the geometrical aspects of the motion for the trajectories near
the separatrix. Upon applying a static magnetic field, the
magnetization precessional motion in our case is markedly
different from that in the standard NMR set up: the key issue
is that the effective magnetic field Heff = (gμB H0, 0,−DSz),
due to the nonlinearity of the system, depends on the values

4
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Figure 3. Motion near the separatrix (k = 1, � = �S = 1),
D = 90 GHz, H = −4.5 × 103 GHz, ε = 0.3, λ = 4, ω0 = 5. The
variable field is applied during the finite time interval between
τ1 = 100 and τ2 = 150. Before applying the variable filed, the
motion is regular and is of an oscillatory nature. The variable field
produces a transition into the rotary regime and then is switched off.
During the transition the motion is chaotic.

of Sz . The magnetization vector tends to align as dictated
by the effective field. However, the orientation of effective
field changes in as much as Sz does. Only in the special case
Sz = 0, ϕ = 0, 2π which corresponds to the homoclinic
points the magnetization vector tends parallel to the effective
field

−→
M ||−→Heff. On the other hand, the homoclinic point is an

unstable equilibrium point. Therefore, the influence of the
variable field leads to a switching between the two types of the
solutions (9). Hence the following scenario emerges: suppose
at the initial time the system is prepared in the degenerated
ground state Ms = S. We apply a constant magnetic along the
x-axis and tune its amplitude to realize the separatrix condition
�s = gμb H0. A small perturbation can then lead to the
transitions. In particular, switching off the perturbation we end
up with the transformed state (cf figure 3).

6. Dynamics far from the separatrix: the mean
Hamiltonian method

To conclude our study, finally we consider dynamics far from
the separatrix. The key point is the fact that stochasticity
emerges in the small phase space domain located near the
separatrix. Far from the separatrix the dynamics is regular,
even in the presence of small perturbations. In this regime, if
the frequency of the variable field is high, analytical solutions
are found with the help of the mean Hamiltonian method. The
basic idea of the mean Hamiltonian method is the following:
for a system having different timescales, one averages over the
fast variables and obtains thus an explicit expression for the
time independent averaged Hamiltonian [26]. In our case, the
following condition should then hold:

gμB H0 < D < ω0

(
2DS

λ

)
, ε = H1/H0 < 1. (24)

This condition implies that the amplitude of the magnetic fields
should be small and the frequency should be high. Provided

those conditions hold it is possible to average the dynamic over
the fast frequency ω0. The averaged Hamiltonian is determined
by the following expression:

Hav = H̄ + 1
2 {〈δH 〉, H } + 1

3 {〈δH 〉, {〈δH 〉, H + 1
2 H̄ }} + · · ·

(25)
where {A, B} is the Poisson bracket, δH = H − H̄ , 〈δH 〉 =∫

δH dt , (. . .) means averaging over the time. Applying the
procedure (25) to the Hamiltonian (1) and after straightforward
but laborious calculations with the accuracy up to the second
order terms (1/ω0)

2 we find

Hav = DS2
z + gμb H0

√
1 − S2

z cos ϕ + 1

2

[
(gμB H1)

2

ω2
0

× (− S2
z (cos(ϕ) + sin(ϕ))2 + (1 − 2S2

z )

× (cos(ϕ) − sin(ϕ))2
)]

. (26)

The Hamiltonian (26) allows for further simplification:
considering that the variable ϕ is fast in comparison with S2

z ,
rotating wave approximation can be used. The Hamiltonian
obtained in this way is completely identical to (4). This means,
that the solutions (9) are still valid. The difference is that, the
constant λ has a different form and depends on the parameters
of the variable field

λ =
(

1 −
(

H1gμB

2ω0

)2
)

2DS

gμb H0
. (27)

By comparing the analytical solutions with the results
of the numerical integration of the system of equations (3)
far from the separatrix we verify the validity of our
approximations.

Figure 4 is for the parameters of the perturbations that are
analogous to figure 2. However, unlike figure 2, where the
system is near the separatrix k ≈ 1, in the case of figure 4
k = 1.6 which means that the system is far from the separatrix.
That is why the dynamics of magnetization is periodic in time.
The difference, between figure 4 and the analytical solution (9)
is that the amplitude of the oscillations is modulated in time.
This observation can be explained with the aid of the average
Hamiltonian. The point is that the solutions (9) do not account
for the existence of multiple angles in the average Hamiltonian
that were ignored by us. They may lead to the appearance of
breathing and amplitude modulations.

From the experimental point of view, the systems
studied in [13] are suitable to realize the effects predicted
here; previous experiments however, were done at too low
temperatures where our scheme becomes less reliable and the
tunnelling was induced by sweeping a magnetic field. As
discussed above our switching scheme is realized differently.

7. Conclusions

We have considered the spin dynamics of a molecular magnet,
when the number of the involved levels is large. The dynamics
of MNM driven by a variable field has been studied before [22].
However, in contrast to [22], the applied fields in our case
are quite strong, i.e. we are in the strongly nonlinear, non-
perturbative regime. The underlying dynamics is then treated

5
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Figure 4. The dynamics far from the separatrix (k = 1.6, � = 4�S) is regular; D = 90 GHz, H = −0.57 × 103 GHz, ε = 0.3, λ = 100,
ω0 = 10. The orientation of the magnetization oscillates with time, however without a change of sign. Dynamically induced switching is not
possible far from the separatrix. The left plot corresponds to the numerical solution of equation (3). The right side corresponds to the
solution (9) Sz(t) = bdn[bλ/k(t − α), 1/k], with re-scaled λ constant (27). The solutions are in a good agreement with each other. The only
difference is the absence of amplitude modulation in the analytical approximation.

semi-classically. We showed that the phase space of the system
contains two domains separated by a separatrix line. The
solutions far from the separatrix correspond to the rotating
and the oscillatory regime, while the separatrix solution is
non-oscillating and is of a soliton type. The existence of the
separatrix is important as the states in the domain near to it
are extremely sensitive to small perturbations. Therefore, if a
variable field is applied, instead of a soliton type solutions, the
spin dynamics turns chaotic and unpredictable. The control
parameter is the initial energy of the system. By a proper
choice of it each type of the dynamic can be realized. The
structure of the system’s phase space is directly related to the
possible mechanisms of the magnetization reversal. Namely, if
the energy is equal to HS = 8

9 E
′
B of the re-scaled anisotropy

barrier E
′
B = DS2(1 − 1

λ
)2 [16] (the separatrix condition)

an external variable field leads to a chaotic change of the
magnetization orientation. The switching process is random
and with the equal probability 1/2, the system may appear in
the new state as well as stay in the old one. The information
about initial state is lost. This result is different from the case
of weak applied fields [22], where the dynamics shows a long-
term memory of the initial state.
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